Why Do Fools Fall Into Infinite Loops:
Singing To Your Computer Science Class

Eric V. Siegel
Department of Computer Science
Columbia University
New York, NY 10027

evs@cs.columbia.edu

Abstract

One effective way to introduce a dose of humanity, acknowl-
edge the needs and struggles of CS1 students, and appeal to
a broader range of learning styles is to present a computer
science topic in an entertaining manner, e.g., with some form
of artistic performance. In this paper, I describe three songs
for CS1 that are designed to help students surmount three
of the most difficult hurdles of that course. Empirical and
anecdotal results demonstrate that the songs help students
learn, and help them enjoy learning. These songs are a case
study in entertainment; all instructors can find some way to
entertain their class, and recordings of the songs themselves
are available on the web for any instructor or student.

1 Introduction

I have been singing to my computer science students for
three semesters, accompanied by my Yamaha PSR-520 key-
board. This is my story.

An undergraduate’s introduction to computer science is
all too often a tremendously intimidating experience. The
student is faced with a slew of completely new vocabulary
and concepts, some of which are particularly difficult. The
range and magnitude of material she will have to face that
semester is particularly unpredictable, potentially of forbod-
ing magnitude. What’s more, many of the classmates sur-
rounding her have had years of programming experience. As
a result, students in this course experience more stress than
any other introductory undergraduate course [3].

On top of this intimidation, several factors can make the
learning and doing of computer science a dehumanizing ex-
perience, i.e., revealing a lack of concern with human needs
and values:

e There are various sources of pressure today to become
computer-literate, since there is a general message,
pushed by the media and popular culture, that we are
in the midst of a revolution of technology and informa-
tion. This pressure can serve as an obstacle to students
experiencing their personal desire to learn about com-
puter science. The concept of what they “should” be

clouds their subjective experience of what they want
to be. Without a love for her or his work, a student is
operating out of selfless submission or servitude [1].

e Since course lectures are generally only long enough
to cover a portion of the details of any given pro-
gramming language and computer system, students
are faced with long, solitary hours working through
many technical details. To a novice, such details can
appear to be senseless, since there is not yet a frame-
work from which to understand their necessity. They
are expected to sink or swim by finding many solutions
on their own, e.g., with elaborately technical Unix man
pages. This attitude is exemplified by the frequent
message, “RTFM.”

e Like many high school and college courses in mathe-
matics, computer science courses run the risk of under-
emphasizing the motivation behind technical content.
This is exacerbated by the fact that in CS1, there is of-
ten a large amount of technical overhead relative to the
volume of underlying principles and concepts, espe-
cially when using a large-scale programming language
such as C.

e Since introduction courses tend to have the largest en-
rollments, especially at large universities, CS1 students
can suffer from the feeling that the course is imper-
sonal.

These factors contribute to making the learning environ-
ment more intimidating and non-constructive. They can
serve to cripple a student’s ability to work effectively, or
lead to student burnout. As a result, many prospective com-
puter science students with worthy potential are filtered (or
“weeded”) out. Alternatively, some students find the need
to “disown themselves,” sacrificing or repressing their needs
and feelings, i.e., their humanity, for work [1].

Moreover, these factors can contribute to the struggle
by students of all success levels to feel interested. Since
their personal human needs are effectively being ignored,
students can become increasingly disattached, begin to care
less about the course material, and therefore experience diffi-
culty paying attention. That is to say, many college students
would prefer to be at a rock concert than in class.

One effective way to introduce a dose of humanity, ac-
knowledge the needs and struggles of computer science stu-
dents, and appeal to a broader range of learning styles is to
present a computer science topic in an entertaining manner,
e.g., with some form of artistic expression such as music,



poetry (e.g., beat poetry) or a dramatic dialogue (e.g., be-
tween puppets). In this paper, I describe three songs for
CS1 that are designed to help students surmount three of
the most difficult hurdles of that course. These songs are
a case study in entertainment; all instructors can find some
way to entertain their class, and recordings of the songs
themselves are available on the web for any instructor or
student. Empirical and anecdotal results demonstrate that
the songs help students learn, and help them enjoy learning.

2 Approach: Artistic Expression in Class

There are several benefits to artistically performing a CS1
lecture. First, senses of humor and irony facilitate a re-
lease of tension on many levels, since they provide extremely
powerful methods to both acknowledge and cope with the
struggles of learning and applying, be they technical strug-
gles (e.g., the difficulty of using pointers), social struggles
(e.g., the factors that cause feelings of intimidation and de-
humanization mentioned above), or personal struggles (e.g.,
the angst of a long debugging process). Humor and irony
are accomplished by such a performance in several ways:

e Directly, with the lyrics or prose of a piece.

e The incongruity of this type of endeavor in the context
of a serious, academic course on a scientific subject.

e The incongruity of approaching an esoteric topic within
a mainstream musical style; for example, singing about
the angst of debugging in a rock ballad, or about the
triumph of modular decomposition in a musical the-
ater number.

e The potential for the instructor to compromise her or
his personal integrity (on a harmless level); the scien-
tifically proficient teacher is putting her or his artistic
self “on the line.”

Introducing an element of entertainment to classroom ac-
tivities, e.g., with music, humor or clever lyrics, has several
advantages. First, it conveys the message that it is OK to
enjoy work in the area of computer science. Furthermore,
if the students are being entertained, they are focused and
paying attention. If they are charmed by an artistic piece,
they will be intrigued and motivated to understand the lyrics
on “artistic” levels, such as clever handling of the material,
or other humorous aspects, as listed above. That is, to un-
derstand the aesthetic appeal, they must understand the
content. This harnesses the power of group learning, since
the responses of fellow classmates such as applause or laugh-
ter can stimulate an individual student to keep up with the
group (“Hmmm, why were they laughing at that?”).

An artistic endeavor in your computer science course also
provides the following contributions:

e Adds variation to lecturing style or classroom activi-
ties.

e Helps destigmatize elusive concepts and big technical
jargon by placing them in an informal context.

e Provides a conducive venue for metaphorically relat-
ing the material to everyday life in extreme terms,
thus broadening context, improving abstract compre-
hension and increasing motivation. Examples include
comparing program modules to hamster Habitrail (tm)
modules and to sub-tasks in life, and, “if you follow the
pointer, you’ll get to the point.”

e Instructor demonstrates her investment in the student
as a whole person, beyond mainstream academic per-
formance.

e Instructor enjoys work more, which is clearly conducive
to creating a constructive learning environment. Many
CS teachers are frustrated musicians and, honestly,
there are moments when I’d prefer to be a rock star
than a computer instructor.

Among artistic endeavors, music in particular has ad-
vantages. For one, music helps with memorization. For
example, many U.S. citizens in their late 20’s and early
30’s have the Preamble to the Constitution memorized due
to an educational 1970’s musical television show on ABC
called “Schoolhouse Rock,” which used song to teach var-
ious topics in history, science and grammar (the preamble
song is now available on a CD, “Schoolhouse Rock: America
Rock,” by Kid Rhino Records). Furthermore, previous work
illustrates the potential to convey irony with song, e.g., al-
ternative computer lyrics that parody well-known songs (see
http://wuw.poppyfields.net/filks/ and
http://wuw.netspace.org/users/dmacks/pub/parodies/
internet-songbook/).

3 The Songs

Three topics that arguably require some of the most dra-
matic mental adjustments by CS1 students are 1) the at-
tention to detail required to carefully design and debug a
program into working order, 2) the elusive concepts of en-
capsulation, abstraction and modular decomposition and 3)
the highly technical domain of pointers. This section de-
scribes three original songs that help smooth over these ad-
justments. www.cs.columbia.edu/~evs has the complete
lyrics and live recordings of these three songs, an orches-
trated studio rendition by a professional Hollywood musi-
cian of the second song, “Modular Decomposition,” as well
as two newer songs. |

The chorus (i.e., refrain) of each song describes the main
concept of the song humorously, metaphorically, or both.
Then, each verse is densely packed with details, such as
technical error messages, so they rhyme. It is important to
set up a context for the song before performing it, so that
students have already been introduced to the main concepts.
However, it is most effective if students are only beginning
to learn the concepts, and even if portions of the song intro-
duce some details that are new. After each performance, the
lyrics are then handed out and explained in greater detail.

3.1 “The Angst of Debugging”

“[Students] must come to grips with the difficulties and pit-
falls [programming] entails.” [2] This song is a rock ballad
with something of a descending baseline. Currently, some
parts are specific to programming in C.

“syntax error”, “parsing error”; did you forget your semi-
colon? / Programming is 99% debugging, so you better keep
it scrollin’. / “unterminated string”, did you match your
double-quote? / Comment your code, label your node, write
yourself a note!

Chorus:

1t’s the pain of finally figuring out what went wrong. / Who’s
to blame when you confuse two equal signs with one? /
Compiler warnings should not be ignored; you’ll dereference



a NULL pointer. / If you screw up and find your butt in an
infinite loop, “control-c” will control C.

Don’t disrespect your teaching assistant — she’s your biggest
hero./ “floating point exception” is a run-time error when
you divide by 0. / “segmentation fault” can bring you to
tears — in your throat there’ll be a lump, / ’cause when it’s
time to submit your homework all you’ll get is a “core dump”

Chorus

Bridge:

Ultimately what you’ve got to do is narrow down the prob-
lem. / It’s like finding a needle in a haystack; you’re never
gonna solve them, / unless you put in some printf()’s, com-
ment half that haystack./ “stack overflow”, you’ve no place
to go, your program is a lame hack!

Chorus

3.2 “Modular Decomposition”

This song is a musical theater ballad with a tone of triumph
and dramaticism. There is a piano solo in the middle; before
the performance, the song is deconstructed down to a trill
between the notes G and A in the piano solo, to illustrate
the hierarchical decomposition of the song itself.

How do I program each line, and finish it on time, / when
this project’s so darn big and overwhelming me? / With
stepwise refinement, you’re breakin’ down the problem, /
then build it back up systematically.

Chorus:

Modular decomposition! / It’s the way things are and ought
to be. / If your life is hierarchical, it’s really quite remark-
ably / easy to do each sub-sub-sub-sub-sub-routine.

All the functions I service must serve a general purpose, /
yet operate alone with one-track minds. / Conceptual ab-
straction is maintained with a module interface, / to build
up libraries of every kind.

Chorus
Piano Solo
Chorus

Bridge:
You and and your abstraction, like Batman and Robin, / an
inventive co-dependent relationship of epic proportions. /

Who will invent a multi-purpose metaphor and meta-metaphor?

/ Who will architect your hamster’s Habitrail (tm) with multi-
purpose tubes? / Who will protect your private micro-thoughts
from hacking invaders? / Who will save your code from infi-
nite tedious intricacy? / Who knows how to use Legos really
well? / You and your modular abstraction.

Chorus

3.3 “Pointers Rap”

The chorus is sung to a funky tune accompanied by clavi-
chord, and the verses are spoken rhythmically with an at-
titude, accompanied by a percussive beat. Currently, some
parts are specific to programming in C.

Chorus (sing):

Show me your data, point it out to me. / If I know where it
is then I can access easily. / With the asterisk Ill derefer-
ence; I can print it out, / and I can even change it, without
a doubt.

The ampersand can awesomely tell you the location. / When
your program’s running smoothly you can go on a vacation.
/ So a program with no pointer’s like an elbow with no joint;
/ if you follow the pointer, you will get to the point.

Verse (rap):
“Memory’s like real estate” — I’ll state and make my metaphor.
/ You want to get some property, a lot, a plot, a farm, a
store. / So allocate your memory and claim it, 'til you use it
up. / Otherwise, “memory fault”, “core dump”, all screwed
up!

Variable values are stored at locations... / in memory that
is; that’s where the space is. / A pointer is some data like
an int, char or double, / but you better treat it special or
you’re gonna be in trouble.

Each location in memory has a memory address. / That
address is the number used to find where data rests. / An
address is a value, just like any other, / so it is stored in
memory like its sisters and brothers.

“All memory’s created equally,” said William Gates. / (But
Microsoft consumers rank as low as big Bill states.) / Val-
ues are content or pointers; I prefer the latter. / Pointers
are meta-data tellin’-me where is what that matters.

Chorus

Verse (rap):

An array’s just a pointer, it turns out, so whatta ya know?
/ It’s a pointer to yer data, all set out in a row. / That’s
why when ya pass it, it’s always by reference; / the function
that gets it can index and dereference it.

It’s not polite to point; it’s totally rude. / But the data
that you point to might be a pointer, dude, / and that can
point me elsewhere, ultimately, / A pointer to a pointer and
I’'m meta-meta-C.

Don’t dereference a NULL pointer; you should not abuse it.
/ Value memory’s values; use it or lose it. / In Java, every-
thing s a pointer, consistently. / But “C” is for “cookie”
and that’s good enough for me!

So, don’t forget to dereference a wvalid pointer, / and don’t
forget to double-dereference a pointer to a pointer, / and
don’t forget to triple-dereference a pointer to a pointer to a
pointer, / and don’t forget to quadruple-dereference a pointer
to a pointer to a pointer to a pointer,

Chorus

Rap:

Linked lists will be your very first abstract data type. / We
saved it til the end because now your brain is ripe. / Fach
element is stored in an allocated structure called a “node”; /
Fach node points to the next one, and “node” rhymes with
“toad”.



So now you know how to manage memory’s massive space.
/ My first computer had 48k and no lowercase! / The past
is gonna haunt us though your computer’s better than mine,
/ ‘cause next year we’re gonna party like it’s 1899.

Chorus

4 Results

Results from a poll indicate that students believe the songs
helped them learn. As part of an anonymous, “initial reac-
tion” survey, midway through the semester, after the first
two of the songs above had been performed in class, students
were asked to respond to the statement, “The songs help me
learn,” with an integer rating between 5, “completely agree,”
and 1, “completely disagree.” The results were 2 10’s (these
students did not adhere to the constraints of the question),
35 5’s, 15 4’s, 35 3’s, 10 2’s and 9 1’s. Of the 19 2’s and 1’s,
8 students included spontaneous, unsolicited written state-
ments in support of the songs, which clarified that their
response was not a rating of the songs and indicated that
they felt the songs were appropriate for the course. Since a
portion of the students come to CS1 with programming ex-
perience, they presumably already knew too much to learn
as much from the songs as the true beginners. Despite this,
it appears that many such students found the entertainment
of the songs valuable for the course.

Written comments by students on the anonymous course
evaluation at the end of the semester showed a dispropor-
tionately large amount of attention to the songs. Of 30 stu-
dents who provided positive written comments, 5 included
positive comments regarding the songs. This is a large pro-
portion, considering the songs only took about 45 minutes
(15 minutes each, including post-discussion of lyrics) of a
total of 2,025 minutes of lectures (27 lectures, not including
exams) plus 6 recitation sessions. Comments included, “All
Columbia instructors should sing in class. It is very ener-
gizing and arousing. Viva Siegel!” and, “The songs really
were a great way to remember the topics.” One of seven
non-anonymous unsolicited emails with positive comments
about the songs said, “Just the idea of incorporating song
into actual pertinent class information is brilliant... It is
truly inspiring to see a teacher so very committed to and
involved with the class he teaches.” No negative or criti-
cal student communications concerning the songs have been
made on polls or elsewhere.

The songs were received enthusiastically by the students.
Both “Modular Decomposition” and the “Pointers Rap”
concluded with rounds of applause reaching a healthy 16
seconds, as measured from the live recordings available from
the URL above. Several performances had partial standing
ovations. This enthusiasm demonstrates that students were
in the least paying clear attention. Note that the on-line
recording of “The Angst of Debugging” was a reprise, so
the audience response is not as vitalized.

The benefit of introducing the songs to CS1 is reflected
in the course evaluation ratings. In the fall semester of 1997
when I taught CS1 with no songs, responses to the final
question of the course evaluation, “Course: Overall Qual-
ity,” averaged 3.83 (out of a possible 5, over 90 responses).
In the spring semester of 1998, I taught CS1 with the same
course material, primarily the same in-class examples, and
the same programming and reading assignments, but with
the addition of the three songs, and six informal recitation
sessions given by undergraduate TAs. This second semester,
the average rating was 4.13 (over 107 responses across two

sections). Although there is no true control experiment to
keep this comparison objective, the addition of the songs was
certainly part of a systematic improvement of the course’s
content and structure.

5 Conclusions and Additional Work

An entertainment-oriented presentation of CS1 subject mat-
ter is engaging, effective, and affirming. Our results show
that it is an alternate teaching method with a highly ben-
eficial payoff, and indicate that it is felicitous for virtually
all students. Teaching and learning are human experiences,
and one straightforward way to humanize computation is to
package it within activities that are designed to be aestheti-
cally pleasing. Moreover, computer science emphasizes that
“multi-media” is an important tool for communication to a
computer user, and this can be generalized to communica-
tion to a computer student.

A few cs-educator colleagues have initially responded
with mild skepticism to this unorthodox paradigm, asking
what kind of student response was elicited. Perhaps some
are concerned that singing in class is distracting from the
content of the course. I hope that the reasoning and results
in this paper show the clear advantages of performing for
your class. For non-singing instructors, consider these songs
a case study in entertainment; all instructors can find some
way to entertain their students. Furthermore, recordings of
the songs themselves are available for instructors and stu-
dents at www.cs.columbia.edu/ evs.

I have also developed a patter, “Digital Love,” on logic
circuits and computer organization (for a service course),
and a rap, “Learn This,” on machine induction (for grad-
uate Al courses), both of which are also available at the
web site above. Recursion is another outstanding hurdle for
many CS1 students, and I have developed a written home-
work assignment in which a series of co-dependent recursive
functions’ outputs map to a three-part harmony rendition
of a catchy circle-of-fifths based melody, available from the
author on request. Further songs and a CD compilation of
studio recordings are forthcoming.

Acknowledgements

The idea of educational computer science songs came when
Leana Golubchik mentioned songs Mark Rubin sang for
computer science students at Johns Hopkins’ Center for Tal-
ented Youth summer program. I have received invaluable
support and input in developing the songs from many of my
friends and family, as well as enthusiastic students. Thanks
to Adam Cohen for orchestrating the recording of “Modular
Decomposition,” and to Lisa A. Schamberg, Judith Klavans,
Alex Chaffee, and Eleazar Eskin for helpful comments on an
earlier draft of this paper.

References

[1] E.H. Fromm. FEscape from Freedom. Henry Holt and
Company, Inc., New York, 1941.

[2] J. Gal-Ezer and D. Harel. What (else) should cs educa-
tors know? Communications of the ACM, 41(9), 1998.

[3] L. Sproull, S. Kiesler, and D. Zubrow. Cultural social-
ization to computing in college. Computers in Human
Behavior, 2:257-275, 1989.



